宇宙知识(短)

(语文网 本文阅读:次)


  • 为什么宇宙会是我们观测到的这副样子?为什么它具有目前已测知的那些基本常数值?80年代初,在宇宙创生大爆炸框架下发展了目前最流行的暴胀宇宙模型:宇宙在大爆炸后不到1秒的时间里膨胀了大约10-30倍,大约和橘子一般大小,然后开始以较稳定的膨胀速率,直到现在,大约150亿年,成为目前的样子.在这个过程中,物质“疙瘩”逐步形成了星系、恒星以及生命.这个模型暴胀期的长短是个关键.若稍短,物质为充分散开,原生宇宙就有重新坍缩为起点;若稍长,原生宇宙的物质则过于分散,形不成星系和恒星,自然也就不会出现生命和人类.因此出现了暴胀为何如此精确的问题,按照现行的物理学基本定律,大爆炸产生的宇宙其“自然尺寸”应该只有亚原子大小,即普克郎长度10 ^-35量级,而这样的宇宙是短命的.前苏联科学家林德提出“自我增殖的宇宙”概念——“最有可能的是,我们正在研究的宇宙是由早期的若干宇宙所形成的.”1987年霍金进一步提出了“婴儿宇宙”模型,两个大宇宙通过一个细“管子”连接起来,这个细管子称为“虫洞”,大宇宙为母宇宙,可能存在着从母宇宙分岔出去的另一端是自由的虫洞,这样的管子成为子宇宙、婴儿宇宙.就是说除了我们生存的宇宙之外还可能存在着众多的由虫洞连接起来的其他宇宙.1992年,萨莫林在前人基础上提出了宇宙自然选择学说.母宇宙是空间闭合的,犹如一个黑洞,该黑洞在生存了一段时间后坍缩为一个奇点,奇点又会反弹爆炸膨胀为新的下一代宇宙.这个学说的要点是,子宇宙中的物理常数较之母宇宙的物理常数会有小的、或强或弱的随机变异,新生的婴儿宇宙在再次坍缩成奇点前能膨胀到几倍普克郎长度大小,随机变异的物理常数有可能允许小小的暴胀,子宇宙可变的较大,当它足够大时,可分隔为两个或更多的不同区域,每个区域又坍缩为一个新的奇点,新奇点又触发下一代的子宇宙,如此时代相传,有的小宇宙重又坍缩,有的具有某些基本常数值的宇宙能更有效的产生许多黑洞,从而较具有其他某些基本常数值的宇宙留下更多的后代,借用生物进化论的术语,它们是被“自然选择”下来的,经“选择”作用,产生越来越多的黑洞,也就形成了更多的宇宙.如果宇宙确是由以前的宇宙世代经过这种“自然选择”而产生的话,那么应该预期我们生存在其中的宇宙会具有所观测到的样子并正好具有目前测知的基本常数值.这个学说的另一要点是关于恒星的存在.在许多情况下,恒星是黑洞的前身.在气体和尘埃云中,恒星仍在形成.在碳尘埃微粒表面进行着的化学反应使气体冷却并促使气云坍缩.但碳尘埃粒子是从那里来的呢?斯莫林指出碳元素是由核聚变反应产生的这一情况只有在质子的质量稍大于中子的质量时才会发生,如果两者质量之差比氦核的结合能大的多,则质子和中子不可能粘在一起形成氦核,没有氦,聚变反应链在第一阶段便终止了,根本形不成更重的元素,从而使恒星将少得多,自然也不会有多少黑洞,因此在任何一个宇宙中,若其中质子与中子的质量相差较大,将只能产生很少的宇宙,也就没有什么“选择”的余地了
  • 宇宙有限无边;宇宙很神秘、很复杂.而且越来越大,但总有一天会消亡.、
    1.宇宙的大小,若太阳为一个南瓜,那么宇宙的直径为1.5亿km.
    2.宇宙的颜色,淡咖啡米色,但在变化中.
    3.宇宙的年龄,150到200亿年.
    4.宇宙的诞生,宇宙大爆炸假说.
    5.宇宙的形状,球形、轮胎形、克莱因瓶型.
    6.宇宙的大致构成,宇宙尘埃、暗物质、各种能量、星系、星团、星云、生命.
    7.宇宙的成分,4%原子、23%不明物质组成的冷暗物质、73%暗能量.
    还有神马疑问,
  • 太空灯塔——中子星
    1967年,天文学家偶然接收到一种奇怪的电波.这种电波每隔1—2秒发射一次,就像人的脉搏跳动一样.人们曾一度把它当成是宇宙人的呼叫,轰动一时.后来,英国科学家休伊什终于弄清了这种奇怪的电波,原来来自一种前所未知的特殊恒星,即脉冲星.这一新发现使休伊什获得了1974年的诺贝尔奖.到目前为止,已发现的脉冲星已超过300个,它们都在银河系内.蟹状星云的中心就有一颗脉冲星.
    脉冲星是本世纪60年代四大天文发现之一 (其他三个是:类星体、星际有机分子、宇宙3K微波辐射).因为它不停地发出无线电脉冲,而且两个脉冲之间的间隔(脉冲周期)十分稳定,准确度可以与原子钟媲美.各种脉冲星的周期不同,长的可达3.7秒,短的只有0.033秒.
    脉冲星就是快速自转的中子星.中子星很小,一般直径只有10千米,质量却和太阳差不多,是一种密度比白矮星还高的超密度恒星.
    中子星的前身一般是一颗质量比太阳大的恒星.它在爆发坍缩过程中产生的巨大压力,使它的物质结构发生巨大的变化.在这种情况下,不仅原子的外壳被压破了,而且连原子核也被压破了.原子核中的质子和中子便被挤出来,质子和电子挤到一起又结合成中子.最后,所有的中子挤在一起,形成了中子星.显然,中子星的密度,即使是由原子核所组成的白矮星也无法和它相比.在中子星上,每立方厘米物质足足有10亿吨重.
    当恒星收缩为中子星后,自转就会加快,能达到每秒几圈到几十圈.同时,收缩使中子星成为一块极强的“磁铁”,这块“磁铁”在它的某一部分向外发射出电波.当它快速自转时,就像灯塔上的探照灯那样,有规律地不断向地球扫射电波.当发射电波的那部分对着地球时,我们就收到电波;当这部分随着星体的转动而偏转时,我们就收不到电波.所以,我们收到的电波是间歇的.这种现象又称为“灯塔效应”.
    中子星的能量辐射是太阳的100万倍.按照目前世界上的用电情况.它在一秒钟内辐射的总能量若全部转化为电能,就够我们地球用上几十亿年.
    中子星并不是恒星的最终状态,它还要进一步演化.由于它温度很高,能量消耗也很快,因此,它的寿命只有几亿年.当它的能量消耗完以后,中子星将变成不发光的黑矮星.
  • 宇宙知识——宇宙自然选择学说简介
    为什么宇宙会是我们观测到的这副样子?为什么它具有目前已测知的那些基本常数值?80年代初,在宇宙创生大爆炸框架下发展了目前最流行的暴胀宇宙模型:宇宙在大爆炸后不到1秒的时间里膨胀了大约10-30倍,大约和橘子一般大小,然后开始以较稳定的膨胀速率,直到现在,大约150亿年,成为目前的样子.在这个过程中,物质“疙瘩”逐步形成了星系、恒星以及生命.这个模型暴胀期的长短是个关键.若稍短,物质为充分散开,原生宇宙就有重新坍缩为起点;若稍长,原生宇宙的物质则过于分散,形不成星系和恒星,自然也就不会出现生命和人类.因此出现了暴胀为何如此精确的问题,按照现行的物理学基本定律,大爆炸产生的宇宙其“自然尺寸”应该只有亚原子大小,即普克郎长度10 ^-35量级,而这样的宇宙是短命的.前苏联科学家林德提出“自我增殖的宇宙”概念——“最有可能的是,我们正在研究的宇宙是由早期的若干宇宙所形成的.”1987年霍金进一步提出了“婴儿宇宙”模型,两个大宇宙通过一个细“管子”连接起来,这个细管子称为“虫洞”,大宇宙为母宇宙,可能存在着从母宇宙分岔出去的另一端是自由的虫洞,这样的管子成为子宇宙、婴儿宇宙.就是说除了我们生存的宇宙之外还可能存在着众多的由虫洞连接起来的其他宇宙.1992年,萨莫林在前人基础上提出了宇宙自然选择学说.母宇宙是空间闭合的,犹如一个黑洞,该黑洞在生存了一段时间后坍缩为一个奇点,奇点又会反弹爆炸膨胀为新的下一代宇宙.这个学说的要点是,子宇宙中的物理常数较之母宇宙的物理常数会有小的、或强或弱的随机变异,新生的婴儿宇宙在再次坍缩成奇点前能膨胀到几倍普克郎长度大小,随机变异的物理常数有可能允许小小的暴胀,子宇宙可变的较大,当它足够大时,可分隔为两个或更多的不同区域,每个区域又坍缩为一个新的奇点,新奇点又触发下一代的子宇宙,如此时代相传,有的小宇宙重又坍缩,有的具有某些基本常数值的宇宙能更有效的产生许多黑洞,从而较具有其他某些基本常数值的宇宙留下更多的后代,借用生物进化论的术语,它们是被“自然选择”下来的,经“选择”作用,产生越来越多的黑洞,也就形成了更多的宇宙.如果宇宙确是由以前的宇宙世代经过这种“自然选择”而产生的话,那么应该预期我们生存在其中的宇宙会具有所观测到的样子并正好具有目前测知的基本常数值.这个学说的另一要点是关于恒星的存在.在许多情况下,恒星是黑洞的前身.在气体和尘埃云中,恒星仍在形成.在碳尘埃微粒表面进行着的化学反应使气体冷却并促使气云坍缩.但碳尘埃粒子是从那里来的呢?斯莫林指出碳元素是由核聚变反应产生的这一情况只有在质子的质量稍大于中子的质量时才会发生,如果两者质量之差比氦核的结合能大的多,则质子和中子不可能粘在一起形成氦核,没有氦,聚变反应链在第一阶段便终止了,根本形不成更重的元素,从而使恒星将少得多,自然也不会有多少黑洞,因此在任何一个宇宙中,若其中质子与中子的质量相差较大,将只能产生很少的宇宙,也就没有什么“选择”的余地了
  •   【宇宙是否有限】
      我们的先辈们曾认为宇宙是范围并不很大的球状天体,其中包含着地球以及其他一些形体较小的发光体.直至公元1700 年以前,这种理论在天文学界一直占据主导地位.即使在哥白尼发现地球并非宇宙的中心之后,人们仍持同样的观点,只是把“宇宙主宰”这一光环又赠给了太阳而已,而宇宙的基本定义仍未得到根本上的改变.天空仍旧是天上的“球”,里面有许多星星,不过,它包括的主体是太阳,相比之下,地球要逊色得多.
      托勒密的“地心说”体系
      哥白尼的“日心说”体系
      开普勒的椭圆型轨道的思想废除了星体是“透明的球体”这一谬论,但是却仍然保留了星体是“最外层天体球”这一说法.感谢卡西尼的研究成果,他揭开了太阳系的真实面目,从而证明了太阳系比人们想象的要大得多,而这也只是将人们脑海中宇宙的边界扩大了而已.
      直至哈雷于1718 年发现了恒星也是运动着的球体这一事实后,天文学家们才开始重新认真地认识宇宙.当然,即使所有星体都在移动,宇宙仍有可能是有限的,而所有的星体也都有可能在进行着极其缓慢的移动.但是为什么有的星体的运动速度之快足以被人们观察到,而正是这些星体才能发出比较明亮的光线呢?
      关于这一问题,存在这样一种可能,即某个星体由于具有较大的形体,从而能放射出比较明亮的光线,同时由于其体积较大,造成宇宙对它的束缚产生了困难,从而导致了它的移动.当然,这只是一种特定的假设,但这种全新的设想对于解开有关谜团是具有创造性意义的——即使其很难在实验室条件下得到验证,或根本无法解决任何问题.
      另一方面,有些星球与地球间的距离有可能相对来说比较近,因此看上去就可能显得比较亮一些.再者,如果所有星球移动的速度是相同的,那么距地球越近,往往就显得运动得更快一些.这一点与实验室条件下的实验结果是相符的.这一现象是以解释运动越快的星体其亮度越高的原因.那相对比较昏暗的星球其实也处于运动状态,但由于它与地球间距离实在太遥远了,因此即使经过几个世纪的观测也无法察觉到它的位置的变化,但这一变化却有可能在数千年的过程中被观测到,这的确需要人们一代一代不懈的努力.
      如果各个星体与太阳系间的距离各不相同,那么宇宙就应该是无限的,而众多的星球则会像蜂群一样遍布于宇宙的各个角落.直至1718 年,人们才意识到这一点而摒弃了宇宙有限论,从此,一幅广阔无垠而壮丽非常的宇宙画卷终于展现在人们的眼前.
      编辑本段【宇宙有中心吗?】
      太阳是太阳系的中心,太阳系中所有的行星都绕着太阳旋转.银河也有中心,它周围所有的恒星也都绕着银河系的中心旋转.那么宇宙有中心吗?一个让所有的星系包围在中间的中心点?
      看起来应该存在这样的中心,但是实际上它并不存在.因为宇宙的膨胀一般不发生在三维空间内,而是发生在四维空间内的,它不仅包括普通三维空间(长度、宽度和高度),还包括第四维空间——时间.描述四维空间的膨胀是非常困难的,但是我们也许可以通过推断气球的膨胀来解释它.
      我们可以假设宇宙是一个正在膨胀的气球,而星系是气球表面上的点,我们就住在这些点上.我们还可以假设星系不会离开气球的表面,只能沿着表面移动而不能进入气球内部或向外运动,在某种意义上可以说我们把自己描述为一个二维空间的人.
      如果宇宙不断膨胀,也就是说气球的表面不断地向外膨胀,则表面上的每个点彼此离得越来越远.其中,某一点上的某个人将会看到其他所有的点都在退行,而且离得越远的点退行速度越快.
      现在,假设我们要寻找气球表面上的点开始退行的地方,那么我们就会发现它已经不在气球表面上的二维空间内了.气球的膨胀实际上是从内部的中心开始的,是在三维空间内的,而我们是在二维空间上,所以我们不可能探测到三维空间内的事物.同样的,宇宙的膨胀不是在三维空间内开始的,而我们只能在宇宙的三维空间内运动.宇宙开始膨胀的地方是在过去的某个时间,即亿万年以前,虽然我们可以看到,可以获得有关的信息,而我们却无法回到那个时候.
      【银河系 Milky Way galaxy 】
      『概述』
      银河系是地球和太阳所属的星系.因其主体部分投影在天球上的亮带被我国称为银河而得名.银河系约有2000多亿个恒星.银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,太阳位于据银河中心2.3万光年处.鼓起处为银心是恒心密集区,故望去白茫茫的一片.银河系俯视像一个巨大的漩涡这个漩涡有四个旋臂组成.太阳系位于其中一个旋臂(猎户座臂),逆时针旋转(太阳绕银心旋转一周需要2.5亿年).
      银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来.银河系中心和4条旋臂都是恒星密集的地方.从远处看,银河系像一个体育锻炼用的大铁饼,大铁饼的直径有10万光年,相当于946080000亿公里.中间最厚的部分约12000光年.太阳位于一条叫做猎户臂的旋臂上,距离银河系中心约2.3万光年.
      银河系的发现经历了漫长的过程.望远镜发明后,伽利略首先用望远镜观测银河,发现银河由恒星组成.而后,T.赖特、I.康德、J.H.朗伯等认为,银河和全部恒星可能集合成一个巨大的恒星系统.18世纪后期,F.W.赫歇尔用自制的反射望远镜开始恒星计数的观测,以确定恒星系统的结构和大小,他断言恒星系统呈扁盘状,太阳离盘中心不远.他去世后,其子J.F.赫歇尔继承父业,继续进行深入研究,把恒星计数的工作扩展到南天.20世纪初,天文学家把以银河为表观现象的恒星系统称为银河系.J.C.卡普坦应用统计视差的方法测定恒星的平均距离,结合恒星计数,得出了一个银河系模型.在这个模型里,太阳居中,银河系呈圆盘状,直径8千秒差距,厚2千秒差距.H.沙普利应用造父变星的周光关系,测定球状星团的距离,从球状星团的分布来研究银河系的结构和大小.他提出的模型是:银河系是一个透镜状的恒星系统,太阳不在中心.沙普利得出,银河系直径80千秒差距,太阳离银心20千秒差距.这些数值太大,因为沙普利在计算距离时未计入星际消光.20世纪20年代,银河系自转被发现以后,沙普利的银河系模型得到公认.
      银河系是一个巨型旋涡星系,Sb型,共有4条旋臂.包含一、二千亿颗恒星.银河系整体作较差自转,太阳处自转速度约220千米/秒,太阳绕银心运转一周约2.5亿年.银河系的目视绝对星等为-20.5等,银河系的总质量大约是我们太阳质量的1万亿倍,大致10倍于银河系全部恒星质量的总和.这是我们银河系中存在范围远远超出明亮恒星盘的暗物质的强有力证据.关于银河系的年龄,目前占主流的观点认为,银河系在宇宙诞生的大爆炸之后不久就诞生了,用这种方法计算出,我们银河系的年龄大概 在145亿岁左右,上下误差各有20多亿年.而科学界认为宇宙诞生的“大爆炸”大约发生200亿年前.
      特征
      『宇宙时间表』
      一般认为,宇宙产生于150亿年前一次大爆炸中.大爆炸后30万年,最初的物质涟漪出现.大爆炸后20亿~30亿年,类星体逐渐形成.大爆炸后100亿年,太阳诞生.38亿年前地球上的生命开始逐渐演化.
      『宇宙及其组成和结构 』
      宇宙是有限的还是无限的?有没有中心有没有边?有没有生老病死有没有年龄?"这些恐怕是自从有人类的活动以来一直被关心的问题.为了有一个更清楚的答案,先看看它的组成和结构.
      (1) 行星
      我们居住的地球是太阳系的一颗大行星.太阳系一共有九颗大行星:水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星.除了大行星以外,还有60多颗卫星、为数众多的小行星、难以计数的彗星和流星体等.他们都是离我们地球较近的,是人们了解的较多的天体.那么,除了这些以外,茫茫宇宙空间还有一些什么呢?
      (2) 恒星和星云
      晴夜,我们用肉眼可以看到许多闪闪发光的星星,他们绝大多数是恒星,恒星就是象太阳一样本身能发光发热的星球.我们银河系内就有1000多亿颗恒星.恒星常常爱好"群居",有许多是"成双成对"地紧密靠在一起的,按照一定的规律互相绕转着,这称为双星.还有一些是3颗、4颗或更多颗恒星聚在一起,称为聚星.如果是十颗以上,甚至成千上万颗星聚在一起,形成一团星,这就是星团.银河系里就发现1000多个这样的星团.
      (3) 银河系及河外星系
      随着测距能力的逐步提高,人们逐渐在越来越大的尺度上对宇宙的结构建立了立体的观念.这里第一个重要的发展,是认识了银河.它包含两重含义,一是了解了银河的形状,二是认识了河外天体的存在.
      (4) 星系团
      当我们把观测的尺度再放大,宇宙可看成由大量星系构成的"介质",而恒星只是星系内部细致结构的表现.这样,为了了解宇宙结构,需关心星系在空间的分布规律.
      (5) 大尺度结构
      今天人们把10Mpc以上的结构称为宇宙的大尺度结构(目前观测到的宇宙的大小是104Mpc).至今大尺度上的观测事实远不是十分明确的.有趣的是,有迹象表明,星系在大尺度上的分布呈泡沫状.即有许多看不到星系的"空洞"区,而星系聚集在空洞的壁上,呈纤维状或片状结构.这一层次的结构叫超星系团.它的典型尺度为几十兆秒差距.
      总之,若把星系看成宇宙物质的基本单元,那么星系的分布状况就是宇宙结构的表现.现在看来,直至50Mpc的尺度为止,星系的分布呈现有层次的结构.这就是我们对宇宙面貌的基本认识
  • 宇宙概括
    宇宙是由空间、时间、物质和能量,所构成的统一体.
    宇宙是万物的总称,是时间和空间的统一.宇宙是物质世界,不依赖于人的意志而客观存在,并处于不断运动和发展中,.宇宙是多样又统一的;多样在物质表现状态的多样性;统一在于其物质性.
    分层次的认识宇宙
    从哲学的观点看.人们认为宇宙是无始无终,无边无际的.不过,对这个深奥的概念我们不打算做深入的探讨,还是留给哲学家们去研究.我们不妨把眼光缩小一些,讲一讲利用我们现有的科学技术所能了解和观测的宇宙,人们把它称为“我们的宇宙”或“总星系”.
    从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年.也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球.这130亿光年的距离便是我们今天(2009年)所知道的宇宙的范围.再说得明确一些,我们今天所知道的宇宙范围,或者说大小,是一个以地球为中心,以130亿光年的距离为半径的球形空间.当然,地球并不真的是什么宇宙的中心,宇宙也未必是一个球体,只是限于我们目前的观测能力,我们只能了解到这一程度.
    在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百到几万亿颗.因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥有多少星星.地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道.
    一直以来, 天文学家和我们一样,想知道宇宙究竟有多大.最近,美国的太空网报道,经过艰苦的计算工作,天文学家发现宇宙超乎寻常的大,其长度至少为1560亿光年.“这样一个有关宇宙大小的发现,显然是以‘宇宙是球形的,是有限无边的’为前提条件的.”中国国家天文台的研究员陈大明在接受记者专访时说,“长期以来,宇宙学研究领域一直有这样一个争论,宇宙究竟是球形的、马鞍形的、还是平坦的.”北京师范大学副教授张同杰说:“国际主流宇宙学普遍认为宇宙是平坦的,是无限的.”那么,围绕宇宙的争论从何而来?理据何在?一种最为普遍的观点:在大爆炸之后,宇宙诞生了.“根据现代宇宙学中最有影响的大爆炸学说,我们的宇宙是大约137亿年前由一个非常小的点爆炸产生的,目前宇宙仍在膨胀.”陈大明研究员说,“这一学说得到大量天文观测的证实.”这一学说认为,宇宙诞生初期,温度非常高,随着宇宙的膨胀,温度开始降低,中子、质子、电子产生了.此后,这些基本粒子就形成了各种元素,这些物质微粒相互吸引、融合,形成越来越大的团块,这些团块又逐渐演化成星系,恒星、行星,在个别的天体上还出现了生命现象,能够认识宇宙的人类最终诞生了.宇宙是球形的、有限无边的?“认为宇宙是球形的观点在很长时间内存在着,尽管不是国际宇宙学界的主流.”陈大明介绍说,“它的每一次提出,都会引起人们的关注,就是因为这一观点很奇特.”一个最为明显的例子就是不久前,由美国数学家杰弗里·威克斯构建的宇宙模型:一个大小有限、形状如同足球的镜子迷宫.“形如足球”的模型令科学界震惊,因为这一学说宣称,宇宙之所以令人产生无边无界的“错觉”,是因为这个有限空间通过“返转”效应无限重复映现自身.威克斯认为,人们之所以感觉宇宙是无限的,是因为宇宙就像一个镜子迷宫,光线传过来又传过去,让人们发生错觉,误以为宇宙在无限伸展.这一惊人推断后来被《新科学家》杂志收录,同时作为一种“奇谈”在民间广为流传着.
    宇宙年龄定义
    宇宙年龄(universe,age of)宇宙从某个特定时刻到现在的时间间隔.对于某些宇宙模型,如牛顿宇宙模型、等级模型、稳恒态模型等,宇宙年龄没有意义.在通常的演化的宇宙模型里,宇宙年龄指宇宙标度因子为零起到现在时刻的时间间隔.通常,哈勃年龄是宇宙年龄的上限,可以作为宇宙年龄的某种度量.根据大爆炸宇宙模型推算,宇宙年龄大约200亿年.
    年龄推算
    宇宙年龄为一百二十五亿年
    【宇宙的不断膨胀】
    科学家认为它起源为137亿年前之间的一次难以置信的大爆炸.这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间.大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗.原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀.
    大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近.引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小.
    理论上存在某种临界密度.如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为开宇宙;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为闭宇宙.
    问题似乎变得很简单,但实则不然.理论计算得出的临界密度为5×10^-30克/厘米3.但要测定宇宙中物质平均密度就不那么容易了.星系间存在广袤的星系间空间,如果把目前所观测到的全部发光物质的质量平摊到整个宇宙空间,那么,平均密度就只有2×10^-31克/厘米3,远远低于上述临界密度.
    然而,种种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素.因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题.不过,就目前来看,开宇宙的可能性大一些.
    恒星演化到晚期,会把一部分物质(气体)抛入星际空间,而这些气体又可用来形成下一代恒星.这一过程会使气体越耗越少,以致最后再没有新的恒星可以形成.10^14年后,所有恒星都会失去光辉,宇宙也就变暗.同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大.
    10^17~10^18年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定.当宇宙到10^24岁时,质子开始衰变为光子和各种轻子.10^32岁时,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞.
    10^100年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逸出,并最终完全消失,宇宙将归于一片黑暗.这也许就是开宇宙末日到来时的景象,但它仍然在不断地、缓慢地膨胀着.
    闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小.如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,当宇宙半径扩大到目前的2倍左右时,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩.
    以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演.收缩几百亿年后,宇宙的平均密度又大致回到目前的状态,不过,原来星系远离地球的退行运动将代之以向地球接近的运动.再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密,收缩也越来越快.
    在坍缩过程中,星系会彼此并合,恒星间碰撞频繁.一旦宇宙温度上升到4000开,电子就从原子中游离出来;温度达到几百万度时,所有中子和质子从原子核中挣脱出来.很快,宇宙进入“大暴缩”阶段,一切物质和辐射极其迅速地被吞进一个密度无限高、空间无限小的区域,回复到大爆炸发生时的状态.
  • 《宇宙知识(短)》全文共10214字

    1