您的位置: 首页 > 教案大全

初一上册教案数学,1一6年级数学教案,初一数学上册

初一上册教案数学

39+[-23]+0+[-16]= 0 [-18]+29+[-52]+60= 19 [-3]+[-2]+[-1]+0+1+2= -3 [-301]+125+301+[-75]= 50 [-1]+[-1/2]+3/4+[-1/4]= -1 [-7/2]+5/6+[-0.5]+4/5+19/6= 1.25 [-26.54]+[-6.14]+18.54+6.14= -8 1.125+[-17/5]+[-1/8]+[-0.6]= -3 [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 有理数的加减混合运算 回答者: 370116 - 翰林文圣 十八级 1-22 10:56 我来评论>> 您觉得最佳答案好不好? 目前有 5 个人评价 60% (3) 40% (2) 相关内容 • 初中一年级有理数混合计算题(300道以上)带答案 • 谁有小学六年级至初一有理数的计算的计算题啊? • 关于有理数计算题和答案 • 谁有初一有理数计算题(我要1000道) • 编写一个小学数学辅助教学软件,主要是测试小学低年... 更多关于300道简单的有理数运算的问题>> 查看同主题问题:有理数的混合运算 其他回答 共 1 条 1.计算题 (1)3.28-4.76+1 - ; (2)2.75-2 -3 +1 ; (3)42÷(-1 )-1 ÷(-0.125); (4)(-48) ÷82-(-25) ÷(-6)2; (5)- +( )×(-2.4). 2.计算题:(10′×5=50′) (1)-23÷1 ×(-1 )2÷(1 )2; (2)-14-(2-0.5)× ×[( )2-( )3]; (3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3 (4)(0.12+0.32) ÷ [-22+(-3)2-3 × ]; (5)-6.24×32+31.2×(-2)3+(-0.51) ×624. [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 75÷〔138÷(100-54)〕 85×(95-1440÷24) 80400-(4300+870÷15) 240×78÷(154-115) 1437×27+27×563 〔75-(12+18)〕÷15 2160÷〔(83-79)×18〕 280+840÷24×5 325÷13×(266-250) 85×(95-1440÷24) 58870÷(105+20×2) 1437×27+27×563 81432÷(13×52+78) [37.85-(7.85+6.4)] ×30 156×[(17.7-7.2)÷3] (947-599)+76×64 36×(913-276÷23) [192-(54+38)]×67 [(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78) 5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2] (136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5 0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5) 812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6 85+14×(14+208÷26) 120-36×4÷18+35 (284+16)×(512-8208÷18) 9.72×1.6-18.305÷7 4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10 12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6 85+14×(14+208÷26) (58+37)÷(64-9×5) (6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18) 0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6 120-36×4÷18+35 10.15-10.75×0.4-5.7 5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52 32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5) [(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6 5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6 3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6 5.8×(3.87-0.13)+4.2×3.74 33.02-(148.4-90.85)÷2.5 (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (9)(-17/4)+(-10/3)+(+13/3)+(11/3) (10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (11)(+1.3)-(+17/7) (12)(-2)-(+2/3) (13)|(-7.2)-(-6.3)+(1.1)| (14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (15)(-2/199)*(-7/6-3/2+8/3) (16)4a)*(-3b)*(5c)*1/6 1. 3/7 × 49/9 - 4/3 2. 8/9 × 15/36 + 1/27 3. 12× 5/6 – 2/9 ×3 4. 8× 5/4 + 1/4 5. 6÷ 3/8 – 3/8 ÷6 6. 4/7 × 5/9 + 3/7 × 5/9 7. 5/2 -( 3/2 + 4/5 ) 8. 7/8 + ( 1/8 + 1/9 ) 9. 9 × 5/6 + 5/6 10. 3/4 × 8/9 - 1/3 0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4 11. 7 × 5/49 + 3/14 12. 6 ×( 1/2 + 2/3 ) 13. 8 × 4/5 + 8 × 11/5 14. 31 × 5/6 – 5/6 15. 9/7 - ( 2/7 – 10/21 ) 16. 5/9 × 18 – 14 × 2/7 17. 4/5 × 25/16 + 2/3 × 3/4 18. 14 × 8/7 – 5/6 × 12/15 19. 17/32 – 3/4 × 9/24 20. 3 × 2/9 + 1/3 21. 5/7 × 3/25 + 3/7 22. 3/14 ×× 2/3 + 1/6 23. 1/5 × 2/3 + 5/6 24. 9/22 + 1/11 ÷ 1/2 25. 5/3 × 11/5 + 4/3 26. 45 × 2/3 + 1/3 × 15 27. 7/19 + 12/19 × 5/6 28. 1/4 + 3/4 ÷ 2/3 29. 8/7 × 21/16 + 1/2 30. 101 × 1/5 – 1/5 × 21 31.50+160÷40 (58+370)÷(64-45) 32.120-144÷18+35 33.347+45×2-4160÷52 34(58+37)÷(64-9×5) 35.95÷(64-45) 36.178-145÷5×6+42 420+580-64×21÷28 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 38.85+14×(14+208÷26) 39.(284+16)×(512-8208÷18) 40.120-36×4÷18+35 41.(58+37)÷(64-9×5) 42.(6.8-6.8×0.55)÷8.5 43.0.12× 4.8÷0.12×4.8 44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 45.6-1.6÷4= 5.38+7.85-5.37= 46.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 48.10.15-10.75×0.4-5.7 49.5.8×(3.87-0.13)+4.2×3.74 50.32.52-(6+9.728÷3.2)×2.5 51.-5+58+13+90+78-(-56)+50 52.-7*2-57/(3 53.(-7)*2/(1/3)+79/(3+6/4) 54.123+456+789+98/(-4) 55.369/33-(-54-31/15.5) 56.39+{3x[42/2x(3x8)]} 57.9x8x7/5x(4+6) 58.11x22/(4+12/2) 59.94+(-60)/10 1. a^3-2b^3+ab(2a-b) =a^3+2a^2b-2b^3-ab^2 =a^2(a+2b)-b^2(2b+a) =(a+2b)(a^2-b^2) =(a+2b)(a+b)(a-b) 2. (x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^2 3. (x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3 =(x^2+2x+3)(x^2+2x+1) =(x^2+2x+3)(x+1)^2 4. (a+1)(a+2)+(2a+1)(a-2)-12 =a^2+3a+2+2a^2-3a-2-12 =3a^2-12 =3(a+2)(a-2) 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) (尽力了!!!)

2020年初一上册数学

有绝对值的定义可知:一个正数的绝对值是它本身,一个负数的绝对值是他的相反数,0的绝对值是0. (1)当a是正数时,|a|=() 负数时 |a|=() 0时 |a|=() 给了分数 在给 15页

1一6年级数学教案

2.-a,a是正数 我也初一,可是我们学的是几何啊???

初一数学上册

人教版数学七年级上册《有理数》优秀教案

1.2.1 有理数

教学目标

【知识与能力目标】

掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。

【过程与方法目标】

体验分类是数学上的常用处理问题的方法。

【情感态度价值观目标】

要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精 神,撰写小论文进一步了解数的发展历史。

教学重难点

【教学重点】

正确理解有理数的概念。

【教学难点】

课前准备

复习正负数,尝试将之前学过的数进行合理的分类。

教学过程

探索新知

之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况。

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如:

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,。··…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。

按照书本的说法,得出“整数”“分数”和“有理数”的概念。

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)

练一练

1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2、教科书第8页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

小结与作业

课堂小结

请同学们回顾本节课所学知识,回答下列问题:

1、有理数是怎样定义的?

2、有理数有几种分类方法?具体是怎样分类的?

3、有理数的学习过程中,应注意什么?

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

作业

教科书第14页习题1.2第1题

板书设计

四年级上册数学教案人教版。

a可能是正整数 负整数或0 a的相反数也可能是正整数 负整数或0 老师讲的 标准小学五年级数学教案上册。

初一上册数学期中考试。

【七年级上册】 数学复习提纲 第一章 有理数 1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。 与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。 1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。 整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。 数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。 只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。 1.3 有理数的加减法 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。 有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 第二章 一元一次方程 2.1 从算式到方程 方程是含有未知数的等式。 方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。 等式的性质: 1.等式两边加(或减)同一个数(或式子),结果仍相等。 2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 2.2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。 第三章 图形认识初步 3.1 多姿多彩的图形 几何体也简称体(solid)。包围着体的是面(surface)。 3.2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。 连接两点间的线段的长度,叫做这两点的距离。 3.3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3.4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。 如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。 等角(同角)的补角相等。 等角(同角)的余角相等。 第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程初一上册教案数学。